Screening of zonal isolates Pseudomonas sp. tolerance to glyphosate and its utilization as a source of carbon and phosphorus
Abstract
Screening of zonal isolates Pseudomonas sр. by cultivation on solid and liquid nutrient media with different sources of carbon and phosphorus at background of increasing concentrations of glyphosate resulted in the determination of perspective target objects, which are capable of metabolization herbicide glyphosate as a sole P-source. Screening showed that phosphorus solubilizing rhizobacteria Pseudomonas sр. virtually not capable of glyphosate utilization as sole carbon source for metabolism.
About the Authors
N. A. МikhailouskayaBelarus
T. B. Barashenko
Belarus
T. V. Pogirnitskaya
Belarus
S. V. Dyusova
Belarus
References
1. Khan, M. S. Role of phosphate-solubilizing microorganisms in sustainable agriculture / M. S. Khan, A. Zaidi. P. A. Wani // Agron. Sustain. Dev. – 2007. – Vol. 27. – P. 29–43.
2. Novel approaches for analysis of biodiversity of phosphate-solubilizing bacteria / M.-H. Ramirez-Bahena [et al.] // Phosphate Solubilizing Microbes for Crop Improvement // Nova Science Publishers / eds. M. S. Khan, A. Zaidi. – 2009. – P. 15–40.
3. Gaur, A. C. Phosphate solubilizing microorganisms as biofertilizers / A. C. Gaur // New Delhi:Omega Sci. Publishers. – 1990. – 283 p.
4. Богдевич, И. М. Фосфорные удобрения в сельском хозяйстве важны и незаменимы / И. М. Богдевич, В. В. Лапа // Земляробства i ахова раслiн. – 2004. – № 2. – С. 24–25.
5. Синягин, И. И. Превращения фосфорных и калийных удобрений в почве и повышение их усвояемости / И. И. Синягин. – М.: МСХ СССР, ВНИИНТИ. – 1969. – С. 6–24.
6. Rodriguez, H. Phosphate solubilizing bacteria and their role in plant growth promotion / H. Rodriguez, R. Fraga // Biotechnol. Adv. – 1999. – Vol. 17. – P. 319–339.
7. Свойства фосфатмобилизующих бактерий и их влияние на урожайность зерновых культур на дерново-подзолистых супесчаных почвах / Н. а. Михайловская [и др.] // Почвоведение и агрохимия. – 2011. – № 2(47). – С. 120–129.
8. Влияние фосфатмобилизующих бактерий на ростовые процессы, урожайность и фитосанитарное состояние посевов зерновых культур на дерново-подзолистых супесчаных почвах / Н. а. Михайловская [и др.] // Почвоведение и агрохимия. – 2012. – № 1(48). – С. 136–149.
9. Mikanová, O. Phosphorus Solubilizing Microorganisms and their Role in Plant Growth Promotion / O. Mikanová, J. Kubát // Microbial Biotechnology in Agriculture and Aquaculture (ISBN: 1-57808-443-1) / Science Publishers // eds. R. C. Ray. – New Hampshire, USA. – 2006. – Vol. II. – P. 111–145.
10. Van Loon, L. C. Systematic resistance induced by rhizosphere bacteria / L. C. van Loon, P.A.H.M., Bakker, C. M. J. Pieterse // Annu. Rev. Phytopathol. – 1998. – Vol. 36. – P. 452–483.
11. Viscozinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J / T. H. Nielsen [et al.] // Appl. Microbiol. – 1999. – Vol. 87. – P. 80–90.
12. Structure, production characteristics and fungal antagonism of tensin – a new cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. / T. H. Nielsen [et al.] // Appl. Microbiol. – 2000. – Vol. 89. – P. 992–1001.
13. Characterization of the pyolutcorin biosynthetic gene cluster of Pseudomonas fluorescens Pf5. J. / B. Nowak-Thompson [et al.] // Bacteriol. – 1999. – Vol. 181. – P. 2166–2174.
14. Bangera, M. G. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetilphloroglucinol from Pseudomonas fluorescens Q2-87. J. / M. G. Bangera, I. S. Thomashow // Bacteriol. – 1999. – Vol. 181. – P. 3155–3163.
15. Duffy, B. Environmental factors modulating antibiotic and siderophore biosysthesis by Pseudomonas fluorescens biocontrol strain / B. Duffy, G. Defago // Appl. Environ. Microbiol. – 1999. – Vol. 65. – P. 2429–2438.
16. Михайловская, Н. А. Влияние ризобактерий на фитопатологическое состояние посевов яровой пшеницы / Н. а. Михайловская, Е. Г. Тарасюк, С. В. Тарасюк // Почвоведение и агрохимия. – 2005. – № 34. – С. 259–262.
17. Haslam, E. The shikimate pathway: biosynthesis of natural products series. Elsevier, New York. 2014.Hui Zhan, Yanmei Feng, Xinghui Fan, Shaohua Chen. Recent advances in glyphosate biodegradation / E. Haslam // Applied Microbiol. Biotech. – 2018. – Vol. 102. – P. 5033–5043.
18. Microbial degradation of glyphosate herbicides (review) / A.V. Sviridov [et al.] // Appl Biochem Microbiol. – 2015. – Vol. 51(2). – P. 188–195.
19. Bai, S. H. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination / S. H. Bai, S. M. Ogbourne // Environ Sci Pollut Res. – 2016. – Vol. 23(19). – P. 18988–19001.
20. Pipke, R. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752 / R. Pipke, N. Amrhein // Appl. Environ. Microbiol. – 1988. – P. 1293–1296.
21. Kishore, G. M. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate / G. M. Kishore, G. S. Jacob // J. Biol. Chem. – 1987. – Vol. 262(25). – P. 2164–2168.
22. Zboinska, E. Organophosphonate Utilization by the Wild-Type Strain of Pseudomonas fluorescens / E. Zboinska, B. Lejczak, P. Kafarski // Appl. Environ. Microbiol. – 1992. – Vol. 58(9). – P. 2993–2998.
23. Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae / C. M. Liu [et al.] // Appl. Environ. Microbiol. – 1991. – Vol. 57. – P. 1799–1800.
24. Zablotowic, R. M. Impact of Glyphosate on the Bradyrhizobium japonicum Symbiosis with Glyphosate-Resistant Transgenic Soybean / R. M. Zablotowicz, K. N. Reddy // A. Minireview. J. Environ. Qual. – 2004. – Vol. 33. – Р. 825–831.
25. Dworkin, M. Experiments with some miсroorganisms which utilized methane аnd hydrogen / M. Dworkin, J. W. Foster // J. Baсteriol. – 1958. – Vol. 75. – P. 592–603.
26. Pipke, R. Uptake of Glyphosate by an Arthrobacter sp. / R. Pipke, A. Schulz., N. Amrhein // Appl. Environ. Microbiol. – 1987. – P. 974–978.
27. Kishore, G. M. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate / G. M. Kishore, G. S. Jacob // J. Biol. Chem. – 1987. – Vol. 262(25). – P. 2164–2168.
28. Balthazor, T. M. Glyphosat-degrading microorganisms from industrial activated sludge / T. M. Balthazor, L. E. Hallas // Appl. Environ.Microbiol. – 1986. – Vol. 51. – P. 432–434.
29. Hui, Zhan. Recent advances in glyphosate biodegradation / Zhan Hui // Applied Microbiol. Biotech. – 2018. – Vol. – 102. – P. 5033–5043.
30. Ratcliff, A. W. Changes in microbial community structure following herbicide (glyphosate) additions to forests soils / A. W. Ratcliff, M. Busse, C. J. Shestak // Appl. Soil Ecol. – 2006. – Vol. 34 – P. 114–124.
31. Busse, M. Glyphosate toxicity and the effects of long term vegetation control on soil microbial communities / M. Busse [et al.] // Soil Biol. Biochem. – 2001. – Vol. 33. – P. 1777–1789.
32. Moneke, A. N. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields / A. N. Moneke, G. N. Okpala, C. U. Anyanwu // Afr. J. Biotechnol. – 2010. – Vol. 9(26). – P. 4067–4074.
33. Quinn, J. P. Glyphosat tolerance and utilization by the microflora of soils treated with the herbicide / J. P.Quinn, J. M. M.Peden, R. E. Dick // Appl. Microbiol. Biotechnol. – 1988. – Vol. 29. – P. 511–516.
34. Sannino, F. Pesticide influence on soil enzymatic activities (J) / F. Sannino, Gianfreda, L. Chemosphere. – 2001. – Vol. 45. – P. 417–445.
35. Кононова, С. В. Фосфонаты и их деградация микроорганизмами / С. В. Кононова, М. а. Несмеянова // Биохимия. – 2002. – Т. 67. – Вып. 2. – С. 220–233.
36. Сook, A. M. Phosphonate utilization by bacteria / A. M. Сook, C. K. Daughton, M. Alexander // J. Bact. – 1978. – Vol. 133. – P. 85–89.
37. Quinn, J. P. Carbon-phosphorus bond cleavage by Gram-positive and Gramnegative soil bacteria / J. P. Quinn, J. M. Peden, R. E. Dick // Appl Microbiol Biotechnol. – 1989. – Vol. 31(3). – P. 283–287
Review
For citations:
Мikhailouskaya N.A., Barashenko T.B., Pogirnitskaya T.V., Dyusova S.V. Screening of zonal isolates Pseudomonas sp. tolerance to glyphosate and its utilization as a source of carbon and phosphorus. Soil Science and Agrochemistry. 2021;(2):35-48. (In Russ.)