Preview

Soil Science and Agrochemistry

Advanced search

Effect of glyphosate-utilizing bacteria Azospirillum sp. and Rhizobium sp. оn phisiological status of plants under different glyphosate content in soil

Abstract

   Cultivation of Pisum sativum L, Millenium under soil microcosm conditions in model experiments with different glyphosate content in soil: С0, С1, С2 and С3, which corresponding the application of 0; 3,0; 10,0 and 50,0 liters of herbicide per hectare. Experimental data showed that seed inoculation by rhizobacteria Azospirillum sp. and Rhizobium sp. provided anti-stress effect on cultivated plants at high diapason of glyphosate content in soil. Anti-stress action of inoculation procedure realized in plant growth promotion, root stimulation, as well as in the increase of leaf’s assimilation area and chlorophylls content in leafs.

About the Authors

N. A. Мikhailouskaya
Institute of Soil Science and Agrochemistry
Belarus

Minsk



T. B. Barashenko
Institute of Soil Science and Agrochemistry
Belarus

Minsk



A. V. Yukhnavets
Institute of Soil Science and Agrochemistry
Belarus

Minsk



T. V. Pogirnitskaya
Institute of Soil Science and Agrochemistry
Belarus

Minsk



S. V. Dyusova
Institute of Soil Science and Agrochemistry
Belarus

Minsk



References

1. Михайловская, Н. А. Скрининг азофиксирующих бактерий по способности метаболизировать гербицид глифосат как источник фосфора / Н. А. Михайловская // Почвоведение и агрохимия. – 2022. – 2(69). – С. 110–120.

2. Okon, Y. Developments in Basic and Applied Biological Nitrogen Fixation / Y. Okon, R. W. F. Hardy // Plant Physiology. Academic Press Inc. –1983. – Vol. 8. – P. 5–54.

3. Michiels, K. Azospirillum – plant root associations : а review / K. Michiels, J. Vanderleyden, A. Gool // Biol. Fertil. Soils. – 1989. – Vol. 8. – P. 356–368.

4. Нестеренко, В. Н. Использование ассоциативных микроорганизмов для повышения урожайности ячменя и многолетних злаковых трав : автореф. дис. … канд. с.-х. наук: 06.01.04 / В. Н. Нестеренко. – Минск, 1993. – 23 с.

5. Mikanová, O. Schopnost kmenů Rhizobium legiminosarum zpřístupňovat fosfor / O. Mikanová [et al.] // Rostlinná výroba. – 1995. − Vol. 41. – № 9. – Р. 423–425

6. Zobiole, L. H. S. Glyphosate affects chlorophyll, nodulation and nutrient accumulation of «second generation» glyphosate-resistant soybean (Glycine max L.) / L. H. S. Zobiole [et al.] // Pestic. Biochem. Physiol. – 2011. – Vol. 99. – P. 53–60.

7. Zobiole, L. H. S. Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean / L. H. S. Zobiole [et al.] // J. Plant Nutr. Soil Sci. – 2012. – Vol. 175. – P. 319–330.

8. Okon, Y. Development and function of Azospirillum-inoculated roots / Y. Okon, Y. Kapulnik // Plant Soil. – 1986. – Vol. 90. – P. 3–16.

9. Kapulnik, Y. Changes in root morphology of wheat caused by Azospirillum inoculation / Y. Kapulnik, Y. Okon, Y. Henis // Can. J. Microbiol. – 1985. – Vol. 31. – P. 881–887.

10. Tien, T.M. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) / T. M. Tien, M. H. Gaskins, D. H. Hubbell // Appl. Environ. Microbiol. – 1979. – Vol. 37, № 5. – P. 1016–1024.

11. Jain, D. K. Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs / D. K. Jain, D. G. Patriquin // Can. J. Microbiol. – 1985. – Vol. 31. – P. 206–210.

12. Zimmer, W. An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum / W. Zimmer, K. Roeben, H. Bothe // Planta. – 1988. – Vol. 176. – P. 333–342.

13. Zimmer, W. The phytohormonal interactions between Azospirillum and wheat / W. Zimmer, H. Bothe // Nitrogen fixation with non-legumes / Eds. F. A. Skinner [et al.]. – Kluwer Academic Publishers, 1989. – P. 137–145.

14. Михайловская, Н. А. Активность фосфатмобилизации у ризобактерий / Н. А. Михайловская [и др.] // Почвоведение и агрохимия. – 2007. – № 1(38). – С. 225–231.

15. Štorkánová, G. P-solubilizační aktivita kmenů rodu Rhizobium. (P-solubilization activity of Rhizobium species strains) / G. Štorkánová [et al.] // Rostlinná Výroba. – 1999. – Vol. 45. – № 9. – Р. 403–40.

16. Mikanová, O. The practical use of the P-solubilization activity of Rhizobium species strains/ O. Mikanová, J. Kubát // Rostlinná Výroba. – 1999. – Vol.45. – № 9. – Р. 407–409.

17. Kennedy, I.R. Biological nitrogen fixation in non-leguminous field crops: recent advances / I. R. Kennedy, Y. Tchan // Plant Soil. – 1992. – Vol. 141. – P. 93–118.

18. Duke, S.O. Glyphosate: a once‐in‐a‐century herbicide / S. O. Duke, S B. Powles // Pest Manage Sci. – 2008. – Vol. 64, № 4. – P. 319–325.

19. Moens, S. Cloning sequencing and phenotypic analysis of laf1, encoding the flagellum of the lateral flagella of Azospirillum brasilense Sp. 7 / S. Moens [et al.] // J. Bacteriol. – 1995. – Vol. 177. – P. 5419–5426.

20. Bashan, Y. Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil / Y. Bashan // J. Gen. Microbiol. – 1986. – Vol. 132. – P. 3407–3414.

21. Mikanová, O. Phosphorus Solubilizing Microorganisms and their Role in Plant Growth Promotion / Mikanová, O., Kubát, J. // Microbial Biotechnology in Agriculture and Aquaculture – 2006. – Vol. II. – Р. 111–145.

22. Mikanová, O. Рractical use of the P-solubilization activity of Rhizobium species strains / O. Mikanová, J.Kubát // Rostlinná Výroba. – 1999. – Vol. 45. – No. 9. – Р. 407–409.

23. Лапа, В. В. Применение удобрений и качество урожая / В. В. Лапа, В. Н. Босак. – Минск, 2006. – 120 с.

24. Способ определения площади листьев гороха: пат. SU 1544279 A1 / А. Г. Бегунова, В. В. Ефремова, Г. Д. Цвиринько, А. М. Бурдун; заявитель Кубанский с/х институт, 1981.

25. Посыпанов, Г. С. Методы изучения биологической фиксации азота воздуха / Г. С. Посыпанов. – М.: Агропромиздат, 1991. – 299 с.

26. Haslam, E. The shikimate pathway: biosynthesis of natural products series / E. Haslam. – Elsevier, New York. – 2014.

27. Fedtke, K. Herbicides / K. Fedtke, S. Duke // Plant toxicology / Hock B, Elstner E, eds. – New York: Marcel Dekker. – 2005. – Р. 247–330.

28. Gomes, M.P. Glyphosate-Dependent Inhibition of Photosynthesis in Willow / M. P. Gomes [et al.] // Front. Plant Sci. – 2016. – Vol. 8. – P. 150–164.

29. Gomes, M. P. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview / M. P. Gomes [et al.] // J. Exp. Bot. – 2014. – Vol. 65, № 17. – P. 4691–4703.

30. Reddy, K. N. Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean / K.N. Reddy, A.M. Rimando, S.O. Duke // Journal of Agricultural and Food Chemistry. – 2004. – Vol. 52. – P. 5139–5143.

31. Yanniccari, M. Glyphosate effects on gas exchange and chlorophyll fluorescence responses of two Lolium perenne L. biotypes with differential herbicide sensitivity / M. Yanniccari [et al.] // Plant Physiol. Biochem. – 2012. – Vol. 57. – P. 210–217.

32. Cakmak, I. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in nonglyphosate resistant soybean. / I. Cakmak [et al.] // Eur. J. Agron. – 2009. – Vol. 31. – P. 114–119.

33. Михайловская, Н. А. Антагонистическая активность ризобактерий A. brasilense и B. circulans по отношению к фитопатогенным микромицетам рр. Fusarium и Alternaria / Н. А. Михайловская, Т. Б. Барашенко // Почвоведение и агрохимия. – 2019. – № 1(62). – С. 234–244.


Review

For citations:


Мikhailouskaya N.A., Barashenko T.B., Yukhnavets A.V., Pogirnitskaya T.V., Dyusova S.V. Effect of glyphosate-utilizing bacteria Azospirillum sp. and Rhizobium sp. оn phisiological status of plants under different glyphosate content in soil. Soil Science and Agrochemistry. 2023;(2):67-79. (In Russ.)

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0130-8475 (Print)