Preview

Soil Science and Agrochemistry

Advanced search

DETERMINATION AGROCHEMICAL SOIL INDICATORS BASED ON UAV AEROPHOTO

Abstract

The article shows the results of the work to determine the dependencies of the microrelief on test objects (fields) and agrochemical soil indices. The questions of the methodical character of shooting from a drone, the definition of a list of agrochemical indicators, the search for dependencies between them, and the results of the chemical analysis of soil samples, selected from micro-depressions on the field and background, are considered. As a result of the carried out work, it is established that in the optical range, the sensor from an UAV can indirectly establish the following parameters: carbon of organic matter, pH of salt, pH of water, Ca2+.

About the Author

M. A. Solokha
Институт почвоведения и агрохимии имени О.Н. Соколовского, г. Харьков, Украина
Russian Federation


References

1. Applications of georeferenced highresolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing./ R. Ballesteros [et al.] // Precision Agriculture. - 2014. - Vol. 15/6. - Р. 579-592.

2. Colomina, I. Unmaned Aerial Systems for Photogrammetry and Remote Sensing: A Review / I. Colomina, P. Molina // ISPRS Journal of Photogrammetry and Remote Sensing. - 2014. - № 92. - P. 79-97

3. Light Weight Rotatory-Wing UAV for large scale mapping applications / N. Darwin [et al.] // Asia Geospatial Forum. - Kuala Lumpur, Malaysia, 2013. - Р. 24-26.

4. Eisenbeiss, H. The Potential of Unmanned Aerial Vehicles for Mapping, in: Fritsch/Spiller (eds.) / H. Eisenbeiss // Photogrammetric Week. - Wichmann Verlag, Heidelberg, 2011. - Р. 135-145.

5. Eisenbeiss, H. UAV Photogrammetry : PhD Dissertation / H. Eisenbeiss; Institute of Geodesy and Photogrammetry - ETH Zurich, Switzerland, 2009. - 235 p.

6. Everaerts, J. The use of Unmanned Aerial Vehicles (UAVS) for remote sensing and mapping / J. Everaerts // International Archives of the Photogrammetry, Remote Sensing and Spatial G.S.Maddala Introduction to Econometrics. - Macmillan Publ. Co., 2008. - Р.1187-1192

7. Gіlch, E. Photogrammetric measurements in fixed wing UAV imagery International Archives of the Photogrammetry / E. Gіlch // Remote Sensing and Spatial Information Sciences Information Sciences XXXVII (B1). - 2012. - Р. 1187-1192.

8. Jorge, C. Desenvolvimento de um VANT totalmente configurado para aplicaхes em Agricultura de Precisгo no Brasil / C. Jorge, Y. Inamasu, B. Carmo. // Anais XV Simpуsio Brasileiro. - 2011. - Р. 399-406

9. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles / A. Khan [et al.]. - 2012. - Р. 1355-1368

10. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and applications for Rangeland / A. Laliberte [et al.]. - 2011. - Р. 2530-2551

11. Makridakis, S. Forecasting: Methods and Applications / S. Makridakis, S.C. Wheelwrite, V.E. McGee - N.Y., Wiley, 1983. - Р.158-159

12. Turner, D. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds / D. Turner, A. Lucieer, C. Watson // Remote Sensing. - 2012. - № 4 - Р. 1392-1410.


Review

For citations:


Solokha M.A. DETERMINATION AGROCHEMICAL SOIL INDICATORS BASED ON UAV AEROPHOTO. Soil Science and Agrochemistry. 2018;(1):67-76. (In Russ.)

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0130-8475 (Print)