Preview

Почвоведение и агрохимия

Расширенный поиск

Скрининг фосфатрастворяющих ризобактерий Pseudomonas spp. по активности культурального роста в зависимости от содержания глифосата в жидкой среде Дворкина-Фостера

Аннотация

Проведен скрининг 15 штаммов фосфатрастворяющих Pseudomonas spp. по активности роста в жидкой минеральной среде Дворкина-Фостера с глифосатом как источником фосфора. Установлены общие для бактерий закономерности – формирование наибольшей плотности популяций при концентрациях глифосата в диапазоне – 0,20–0,60 мкг/мл; снижение активности роста при повышении концентрации глифосата до 1,00 мкг/мл и значимый спад активности роста при увеличении концентрации ГФ до 3 мкг/мл. Сравнительная оценка активности роста в жидкой среде Дворкина-Фостера с разными источниками азота показала, что протестированные штаммы Pseudomonas spр. практически не используют глифосат в качестве единственного источника азота для метаболизма.

Об авторах

Н. А. Михайловская
Институт почвоведения и агрохимии
Беларусь

г. Минск



Т. Б. Барашенко
Институт почвоведения и агрохимии
Беларусь

г. Минск



Т. В. Погирницкая
Институт почвоведения и агрохимии
Беларусь

г. Минск



С. В. Дюсова
Институт почвоведения и агрохимии
Беларусь

г. Минск



Список литературы

1. Carlisle, S. M. Glyphosate in the Environment / S. M. Carlisle, J. T. Trevors // Water, Air and Soil Poll. – 1988. – Vol. 39. – P.409–420.

2. Duke, S. O. Glyphosate: a once in a century herbicide / S. O. Duke, S. B. Powles // Pest Manage Sci. – 2008. – Vol. 64(4). – Р. 319–325.

3. Zhan, H. Recent advances in glyphosate biodegradation / H. Zhan [et al.] // Applied Microbiol. Biotech. − 2018. − Vol. 102.− P. 5033–5043.

4. Кононова, С. В. Фосфонаты и их деградация микроорганизмами / С. В. Кононова, М. А. Несмеянова // Биохимия. – 2002. – Т. 67. – Вып. 2. – С. 220–233.

5. Environmental and health effects of the herbicide glyphosate / A. H. C. Van Bruggen [et аl.] // Science of The Total Environment. – 2018. – Vol. 6. – P. 255–268.

6. Glyphosate: safety risks, biodegradation, and bioremediation / A. Sviridov [et аl.] // Current environmental issues and challenges. – 2014. – Springer, Dordrecht. – Р. 183–195.

7. Lupi, L. Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina / L. Lupi [et. al] // Sci Total Environ. – 2015. – Vol. 536. – Р. 687–694.

8. Battaglin, W. A. Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation / W. A. Battaglin, M. T. Meyer, K. M. Kuivila // J. Amer. Water Res. Assoc. – 2014. – Vol. 50(2).

9. Glyphosate dispersion, degradation, and aquifer (водоносный) contamination in vineyards and wheat fields in the Po Valley, Italy / D. Cecilia [et al.] // Water Research. – 2018. – Vol. 146(1). – P. 37–54.

10. Glyphosate and AMPA in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO. – 2005. –10 p.

11. Grandcoin, A. Aminomethylphosphonic acid (AMPA) in nature waters: its sources, behavior and environmental fate / A. Grandcoin, S. Piel, E. Baur // Water Research. – 2017. – P. 187–197.

12. Vereecken, H. Mobility and leaching of glyphosate: A review / H. Vereecken // Pest Management Science. – 2005. – Vol. 61(12). – P. 1139–1151.

13. Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period / T. Norgaard [et. al] // Vadose Zone J. – 2014. – Vol. 13(10). – P. 1–18.

14. Mercurio, P. Glyphosate persistence in seawater / P. Mercurio [et al.] // Mar Pollut Bull. – 2014. – Vol. 85(2). – Р. 385–390.

15. Annett, R. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment / R. Annett, H. R. Habibi, A. Hontela // J. Appl. Toxicol. − 2014. − Vol. 34(5).− Р. 458–479.

16. Relevance of urban glyphosate use for surface water quality / I. Hanke [et al.] // Chemosphere. – 2010. – Vol. 81(3). – P. 422–429.

17. Bai, S. H. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination / S. H. Bai, S. M. Ogbourne // Environ. Sci. Pollut. Res. – 2016. – Vol. 23(19). – P. 18988–19001.

18. Cessna, A. J. Residues of glyphosate and its metabolite AMPA in strawberry fruit following spot and wiper applications / A. J. Cessna, N. P. Cain // Can. J. Plant Sci. – 1992. – Vol. 72. – P.1359–1365.

19. Шувалова, Н. Е. Биотехнологические аспекты определения токсичности пестицидов на клеточных и организменных тест-системах: автореф. дис. / Н. Е. Шувалова. – Тверь, 2021.

20. Detection of glyphosate residues in animals and humans / M. Krüger [et al.] // Journal of Environmental & Analytical Toxicology. – 2014. – Vol. 4. – P. 1–8.

21. Samsel, А. Glyphosate Supression of Cytochrom P 450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases / А. Samsel, S. Seneff. // Entropy. – 2013 – Vol. 15. – № 4. – P. 1416–1463.

22. Glyphosate is an inhibitor of plant Cytochrome P 450: Functional expression of thlaspi arvensae cytochrome P45071b1/reductase fusion protein in Escherichia coli / D. C. Lamb [et al.] // Biochem. Biophys. Res. Comm. 1998. – Vol. 244. – P. 110–114.

23. Guilherme, S. DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by aminomethylphosphonic acid (AMPA) – the major environmental breakdown product of glyphosate. / S. Guilherme [et al.] // Environ. Sci. Pollut. Res. – 2014. – Vol. 21(14). – P. 8730–8739.

24. Benachour, N. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells / N. Benachour, G. Seralin, // Chemical Research in Toxicology. – 2009. – Vol. 22. – Р. 97–105.

25. Séralini, G. Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase / G. Séralini, S. Moslemi // Molecular and Cellular Endocrinology. – 2018 – Vol. 178(1–2). – P. 117–131.

26. Chaufan, G. Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: Differences with its active ingredient. / G. Chaufan, I. Coalova, M. Molina // International Journal of Toxicology. – 2014. – Vol. 33(1). – Р. 29–38.

27. Glyphosate-Based Herbicides Are Toxic and Endocrine Disruptors in Human Cell Lines / C. Gasnier [et al.] // Toxicology. – 2009. – Vol. 262(3). – P. 184–191.

28. Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study / A. DeRoos [et al.] // Enivironmental Health Perspectives. – 2005. – Vol. 113. – Р. 49–54.

29. Ecotoxicological effects of different glyphosate formulations / M.Sihtmäe [et al.] // Appl. Soil Ecol. – 2013. – Vol. 72 – P. 215–224.

30. Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae) / R. B. Bringolf [et al.] // Environmental Toxicology and Chemistry. – 2007. – Vol. 26. – P. 2094–2100.

31. Relyea, R.A. The lethal impact of Roundup on aquatic and terrestrial amphibians / R. A. Relyea // Ecological applications. – 2005. – Vol. 15. – P. 1118–1124.

32. Gaupp-Berghausen, M. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations / M. Gaupp-Berghausen, M. Hofer, B. Rewald, J. G. Zaller // Scientific reports. – 2015. – Vol. 5. – P. 12886–12890.

33. Микробная деградация гербицида глифосата (обзор) / А. В. Свиридов [и др.] // Прикладная биохимия и микробиология. – 2015. – Т. 51. – Вып. 2. – С. 183–190.

34. Скрининг зональных изолятов Pseudomonas spp. по устойчивости к глифосату и способности утилизировать его как источник углерода и фосфора / Н. А. Михайловская [и др.] // Почвоведение и агрохимия. – 2021. – № 1(38). – С. 225–231.

35. Metabolism of Glyphosate in Pseudomonas sp. strain Lbr. / G. S. Jacob [et al.] // Appl. Environ. Microbiol. – 1988. – Vol. 54(12). – P. 2953–2958.

36. White, A. K. Two C–P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphate and hypophosphite / A. K. White, W. W. Metcalf // J. Bacteriol. – 2004. – Vol. 186. – P. 4730–4739.

37. Kishore, G. M. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate / G. M. Kishore, G. S. Jacob // J. Biol. Chem. –1987. – Vol. 262(25). – P. 12164–12168.

38. Dick, R. E. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW / R. E. Dick, J. P. // Quinn FEMS Microbiology Letters. – 1995. – Vol. 134. – P. 177–182.

39. Glyphosate toxicity and the effects of long term vegetation control on soil microbial communities / M. Busse [et al.] // Soil Biol. Biochem. – 2001. – Vol. 33. – P. 1777–1789.

40. Активность фосфатмобилизации у ризобактерий / Н. А. Михайловская [и др.] // Почвоведение и агрохимия. – 2007. – № 1(38). – С. 225–231.

41. Dworkin, M. Experiments with some miсroorganisms which utilized methane and hydrogen / M. Dworkin, J. W. Foster // J. Baсteriol. – 1958. – Vol. 75. – P. 592–603.


Рецензия

Для цитирования:


Михайловская Н.А., Барашенко Т.Б., Погирницкая Т.В., Дюсова С.В. Скрининг фосфатрастворяющих ризобактерий Pseudomonas spp. по активности культурального роста в зависимости от содержания глифосата в жидкой среде Дворкина-Фостера. Почвоведение и агрохимия. 2023;(1):136-148.

For citation:


Мikhailouskaya N.A., Barashenko T.B., Pogirnitskaya T.V., Dyusova S.V. Screening of phosporus solubilizing bacteria Pseudomonas spp. growth activity in dependence on glyphosate content in liquid Dworkin-Foster medium. Soil Science and Agrochemistry. 2023;(1):136-148. (In Russ.)

Просмотров: 139


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0130-8475 (Print)